Strictness of the log-concavity of generating polynomials of matroids
نویسندگان
چکیده
Recently, it was proved by Anari–Oveis Gharan–Vinzant, Anari–Liu–Oveis Gharan–Vinzant and Brändén–Huh that, for any matroid M, its basis generating polynomial independent set are log-concave on the positive orthant. Using these, they obtain some combinatorial inequalities matroids including a solution of strong Mason's conjecture. In this paper, we study strictness log-concavity these polynomials determine when equality holds in inequalities. We also consider generalization our result to morphisms matroids.
منابع مشابه
Matroids and log-concavity
We show that f -vectors of matroid complexes of realizable matroids are strictly log-concave. This was conjectured by Mason in 1972. Our proof uses the recent result by Huh and Katz who showed that the coefficients of the characteristic polynomial of a realizable matroid form a log-concave sequence. We also prove a statement on log-concavity of h-vectors which strengthens a result by Brown and ...
متن کاملLog-concavity of characteristic polynomials and the Bergman fan of matroids
In a recent paper, the first author proved the log-concavity of the coefficients of the characteristic polynomial of a matroid realizable over a field of characteristic 0, answering a long-standing conjecture of Read in graph theory. We extend the proof to all realizable matroids, making progress towards a more general conjecture of Rota–Heron–Welsh. Our proof follows from an identification of ...
متن کاملUnimodality and Log-Concavity of Polynomials
A polynomial is unimodal if its sequence of coefficients are increasing up to an index, and then are decreasing after that index. A polynomial is logconcave if the sequence of the logarithms of the coefficients is concave. We prove that if P (x) is a polynomial with nonnegative non-decreasing coefficients then P (x+z) is unimodal for any natural z. Furthermore, we prove that if P (x) is a log-c...
متن کاملExpansions of Chromatic Polynomials and Log-concavity
In this paper we present several results and open problems about logconcavity properties of sequences associated with graph colorings. Five polynomials intimately related to the chromatic polynomial of a graph are introduced and their zeros, combinatorial and log-concavity properties are studied. Four of these polynomials have never been considered before in the literature and some yield new ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series A
سال: 2021
ISSN: ['0097-3165', '1096-0899']
DOI: https://doi.org/10.1016/j.jcta.2020.105351